Proteolytic enzyme mediated antagonistic potential of Pseudomonas aeruginosa against Macrophomina phaseolina.
نویسندگان
چکیده
A new antagonistic bacterial strain PGPR2 was isolated from the mungbean rhizosphere and documented for the production of hydrolytic enzymes with antifungal activity. Based on the phylogenetic analysis of the 16S rRNA gene sequence and phenotyping, this strain was identified as Pseudomonas aeruginosa. Maximum protease activity (235 U/mL) was obtained at 24 h of fermentation. The protease was purified to homogeneity in three steps: ammonium sulphate precipitation, anion exchange chromatography on DEAE- cellulose resin and gel filtration chromatography using P6 column. The purified enzyme had a molecular weight of -33 kDa. The purified protease exhibited maximum activity at pH 6.0 and retained 80% of activity in a pH range of 5.0 - 9.0. Proteolytic activity was maximum in a temperature range of 40-70 degrees C. However, the enzyme was stable at 40 degrees C for 60 min. Among the metals tested, Mg2+ enhanced the protease activity. Internal amino acid sequence of the protease obtained by MALDI -ToF and subsequent Mascot database search showed maximum similarity to the HtpX protease of P. aeruginosa strain PA7. Thus, by virtue of its early production time, thermostability and effective antifungal ability, the protease purified and characterized from P. aeruginosa PGPR2 has several potential applications as fungicidal agents in agriculture.
منابع مشابه
The biocontrol potential of Pseudomonas fluorescens against Macrophomina phaseolina and estimating the total phenol compounds of bean roots
Charcoal rot caused by Macrophomina phaseolina is one of the most important soil borne diseases with a broad host range including bean, which annually brings a significant damage to this plant. Biological control of charcoal rot is very important because its chemical control harms the environment, microflora and soil fertility. Chemical control of charcoal rot is also difficult and sometimes in...
متن کاملInduction of Systemic Resistance in Cotton by the Neem Cake and Pseudomonas Aeruginosa under Salinity Stress and Macrophomina Phaseolina Infection
Induction of systemic resistance by neem cake (Azadirachta indica) and endophytic Pseudomonas aeruginosa, a plant growth promoting bacterium, was evaluated in cotton (Gossypium hirsutum L.) under salinity stress and fungal infection. The combination of biocontrol agent and organic matter induced tolerance against fungal infection (Macrophomina phaseolina) and salinity stress (EC= 17.3 dS, m) by...
متن کاملEvaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean.
Plant growth promoting rhizobacteria (PGPR) are potential agents to control plant pathogens and their combined use with biopesticides such as phosphites may constitute a novel strategy to incorporate in disease management programs. In the present study, 11 bacterial isolates were selected on the basis of their antagonistic activity against Macrophomina phaseolina in dual-culture tests, and thei...
متن کاملAntagonistic effect of fluorescent pseudomonads against Macrophomina phaseolina that causes charcoal rot of groundnut.
Maximum colony growth inhibition was observed due to Pseudomonas PS2 (74%) as compared to PS1 (71%) on trypticase soy agar (TSM) plates after 5 days of incubation. Light and scanning electron microscopic examination showed hyphal coiling, vacuolation, coagulation and granulation of cytoplasm resulting in lysis of hyphae of M. phaseolina by pseudomonads. Cell free culture filtrates of strains PS...
متن کاملAn insight into the lignin peroxidase of Macrophomina phaseolina
Macrophomina phaseolina is one of the deadliest necrotrophic fungal pathogens that infect more than 500 plant species including major food, fiber, and oil crops all throughout the globe. It secretes a cocktail of ligninolytic enzymes along with other hydrolytic enzymes for degrading the woody lignocellulosic plant cell wall and penetrating into the host tissue. Among them, lignin peroxidase has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Indian journal of experimental biology
دوره 51 11 شماره
صفحات -
تاریخ انتشار 2013